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1. More Implementation Details
1.1. Self-supervised Pretraining Details.

In the pretraining stage, we adopt the SGD optimizer
with the initial learning rate of 0.01 and weight decay of
10−4, and we decay the learning rate by 0.1 at epoch 120
and 180. For the implementation of MoCo, we closely fol-
low the parameter setting in [2]. The number of the neg-
ative queue is set to 65536 for Kinetics-400, and 2048 for
UCF101, respectively. We also swap the key/queue samples
so that each sample can generate the gradient for optimiza-
tion. The momentum of updating the key encoder is 0.999,
and the temperature hyper-parameter τ is 0.1. We use a 2-
layer MLP projection head.

1.2. Augmentation Details.

We perform data augmentation using Kornia pack-
age [4]. In the pretraining and finetune phase, we crop
224×224 or 112×112 pixels from a video with Random-
ResizedCrop, which randomly resizes the input area be-
tween a lower bound and upper bound. We set the bound
as [0.2, 1]. Then, the basic augmentation set consists
of RandomGrayscale (probability 0.2), ColorJitter (prob-
ability 0.8, {brightness, contrast, saturation, hue} = {0.4,
0.4, 0.4, 0.1}), RandomHorizontalFlip (probability 0.5) and
RandomGaussianBlur (probability 0.5, the kernel with ra-
dius 23 and standard deviation ∈ [0.1, 2.0]). In the linear
probe stage, we take a simpler augmentation setting instead.
We only apply RandomResizedCrop with the bound [0.2, 1]
and RandomHorizontalFlip (probability 0.5).

1.3. More Details on Action Recognition.

In the finetune stage, the SGD optimizer is adopted with
the initial learning rate of 0.025 and weight decay of 10−4.
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Figure 1. Illustration of FAME visualization. The first row is the
video frame while the second row is the foreground mask FAME
generates.

We finetune the model for 150 epochs with a batch size of
128 on 4 Tesla V100 GPUs. We decay the learning rate by
0.1 at epoch 60 and 120. Besides, we add the dropout layer
before the last fully connected layer. We set dropout rate
0.7 for UCF101 and 0.5 for HMDB51, respectively.

We train the last fully connected layer in the linear probe
with the initial learning rate of 5 and weight decay of 0.
We finetune the model for 100 epochs with a batch size of
128 on 4 Tesla V100 GPUs. We decay the learning rate
by 0.1 at epoch 60 and 80. Besides, We L2 normalize the
embeddings before the last fully connected layer.

2. More Visualization of FAME
In Figure 1, we show more foreground masks obtained

from FAME. We show that FAME can discover most re-
gions of the foreground objects and remove the monotonous
backgrounds.

3. CAM Visualization
Besides CAAM visualization, we provide the CAM [5]

visualization in Figure 2. With that, we can spot the contri-
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Figure 2. Class activation maps (CAM) visualization. Red areas
indicate the important areas for the model to predict the action
class. Comparing to baseline, FAME resists the impact of back-
ground and highlights the motion areas.

bution of each area and find crucial regions for discriminat-
ing the specific action class. We find that when integrated
with FAME, the model can focus on moving foreground
area rather than background context. For example, in the
first row of Figure 2, FAME precisely captures the moving
upper and lower body when the man is practicing TaiChi,
while the baseline displays a dispersed highlight map and
fails to attend to the motion area. In addition, we illus-
trate that the CAM activation map can almost overlap with
the foreground mask generated by FAME. It testifies that
our strong motion inductive augmentation guides the model
to perceive the motion patterns and hinder the background
bias.

4. Visualization of Video Retrieval
In Figure 3, we demonstrate the results of video retrieval.

After pretraining the model on Kinetics-400, we conduct
the video retrieval experiment on UCF101. The results
show that our model can retrieve diverse video samples that
share the same action semantics with the query, regardless
of the background context. For example, in Fig 3d, the
query sample contains the action in the sandpit, and our
model could retrieve the long jump samples in the stan-
dard stadium. Though the backgrounds in the query and
retrieved videos are quite different, our model achieves ac-
curate retrieval by attending to the dynamic motions and
understanding the true action semantics.

5. More Results on Something-something V2
We finetune our pretained model on Something-

Something V2 [3]. We obtain 53.3% Top-1 accuracy with
R(2+1)D, which beats RSPNet [1] under same resolution.
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