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Abstract

In light of the success of contrastive learning in the im-
age domain, current self-supervised video representation
learning methods usually employ contrastive loss to facil-
itate video representation learning. When naively pulling
two augmented views of a video closer, the model how-
ever tends to learn the common static background as a
shortcut but fails to capture the motion information, a phe-
nomenon dubbed as background bias. Such bias makes
the model suffer from weak generalization ability, lead-
ing to worse performance on downstream tasks such as
action recognition. To alleviate such bias, we propose
Foreground-background Merging (FAME) to deliberately
compose the moving foreground region of the selected video
onto the static background of others. Specifically, with-
out any off-the-shelf detector, we extract the moving fore-
ground out of background regions via the frame differ-
ence and color statistics, and shuffle the background re-
gions among the videos. By leveraging the semantic con-
sistency between the original clips and the fused ones, the
model focuses more on the motion patterns and is debi-
ased from the background shortcut. Extensive experiments
demonstrate that FAME can effectively resist background
cheating and thus achieve the state-of-the-art performance
on downstream tasks across UCF101, HMDB51, and Div-
ing48 datasets. The code and configurations are released at
https://github.com/Mark12Ding/FAME.

1. Introduction
The recent development of deep learning has promoted

a series of applications in videos, such as video recogni-
tion [14, 50, 56], video retrieval [16, 66], and video object
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(a) Results of vanilla contrastive learning.

(b) Results of our approach FAME.

Figure 1. Class-agnostic activation map [3] visualization of impor-
tant areas. The heatmap indicates how much the pretrained model
attends to the region. Compared to the conventional approach, our
method mitigates the background bias significantly.

segmentation [11, 28, 69]. While various large-scale bench-
marks [1, 5, 18] are the key to those successes, the costly
manual annotation involved in fully-supervised methods
excludes the potential utilization of millions of uncurated
videos on the Internet. To further advance the video-related
research, learning video representation in an unsupervised
manner is of great significance and emerges as a general
trend in the computer vision community.

Recently, unsupervised learning in images [9, 40, 49, 58]
has achieved competitive performances compared to their
supervised counterparts, especially with the contrastive
self-supervised learning formulation [7, 24]. The common
idea of contrastive learning is to pull ‘positive’ pairs to-
gether in the embedding space and push apart the anchor
from ‘negative’ samples. Due to inaccessibility to the la-
bel, a positive pair is usually formed by data augmentations
of the anchor sample while the negative samples come from
other samples. Inspired by these successes, various attempts
have also been made in self-supervised video representa-
tion learning [15, 44]. However, we find applying vanilla



Figure 2. Illustration on a diving sequence. The green dashed box
represents the scene and the red box means motion area. The two
clips have the same background but distinct motions. Drawing
such positive pairs closer inclines the model towards static bias.

contrastive learning on the video domain directly will lead
the model to attending to the static area. As illustrated in
Fig. 1, vanilla contrastive learning does not concentrate on
the moving actors or objects but lays much emphasis on
background areas. There might be two possible reasons:
1) the background usually covers much more area than the
moving objects in the whole video, so that the model is
more likely to focus on the background. 2) when sampling
two different clips of the video, the static contexts are al-
most the same but there tend to be subtle differences in mo-
tion patterns. We show an example in Fig. 2. There are
two clips sampled from one diving video. The green region
is the background, which occupies over 3/4 area. And the
red box, a small area, contains the moving diver. In addi-
tion, the backgrounds of the two clips are almost identical
while two motions appear somewhat different, i.e., one is
standing on the springboard, the other is taking off. That
is to say, when we follow conventional visual augmenta-
tion techniques to form the positive pair and employ the
multi-view constraint as self-supervision, it is intuitive for
the model to pull static features close but attend less to mo-
tions. Hence, to let the contrastive learning pipeline be more
motion-aware, we need to construct positive pairs in the
way where the motions are more similar than backgrounds.

Here comes to a question on how to fabricate the motion-
aware positive pair that makes contrastive learning prioritize
the motion patterns. This paper explores this feasibility and
presents a new augmentation technique named Foreground-
background Merging (FAME). Our motivation is to keep
motion areas (foreground) unchanged as much as possible
and replace static areas (background) with irrelevant con-
tent. Specifically, we first circle out the edge region of
the moving object as the seed region via frame difference.
Then, we use color statistics to extrapolate the entire mov-
ing object from the seed region. This efficient foreground

discovery method extracts dynamic areas on which we ex-
pect the model to put emphasis. Then, we fuse the extracted
foreground regions of each video with random backgrounds
from other videos to form new action samples. In this way,
when we force the model to learn the consistent representa-
tion between original clips and distracting clips, the model
has to learn representations that are sensitive to motion pat-
terns and overcome the background cheating. We evalu-
ate the proposed FAME on three action recognition bench-
marks. The superior experimental performance verifies that
FAME enables self-supervised contrastive video represen-
tation learning to generalize better and distill the motion-
aware representations. In short, we summarize our contri-
butions as follows:

• We demonstrate the background bias caused by vanilla
contrastive learning and propose a simple yet effective
augmentation method FAME to help the model break
background shortcuts and learn motion-aware repre-
sentations.

• Our method enhances the conventional contrastive
learning without whistle and bell and achieves
the start-of-the-art performance among UCF101,
HMDB51, and Diving48 datasets.

2. Related Work

Contrastive Visual Representation Learning. Recently,
contrastive learning has greatly facilitated self-supervised
visual representation learning [7,24,40,49,58]. It performs
instance discrimination in a fully self-supervised manner
to pull the representations of the same instance close and
push those of different instances far away. Following this
idea, [58] proposes to formulate the instance discrimination
as a non-parametric classification problem. [40] mathemati-
cally proves that we could estimate mutual information with
InfoNCE loss [20], which can be easily used for optimiza-
tion. Later, MoCo [24] proposes to make use of key repre-
sentations calculated in previous iterations as negative sam-
ples to facilitate contrastive learning. SimCLR [7] employs
a large batch size instead of the memory bank to expand the
negative pool for more robust visual representation. Con-
sidering that SimCLR requires tremendous computational
resources, we adopt the MoCo framework as a strong base-
line for self-supervised pretraining in our work.
Self-supervised Video Representation Learning. In video
representation learning, there has been a line of works
that employ diverse pretext tasks for self-supervised rep-
resentation learning [35, 39, 61]. The most prevalent ap-
proaches include temporal order prediction [39, 61], video
colorization [51], spatio-temporal puzzling [31] and speed
prediction [4]. These methods generally employ manually
designed tasks to seek the spatio-temporal cues in video



data, but the performance is limited. Then, for further im-
provement, some works apply contrastive learning formu-
lation into video representation learning [15, 44]. Han et
al. use InfoNCE loss to guide dense predictive coding in
videos [21,22]. Based on the contrastive formulation, [6,26]
jointly learn appearance and speed of videos, and [68] si-
multaneously encodes inter- as well as intra-variance in
videos. [2, 23, 45] propose to leverage the consistency be-
tween different modalities to enhance video representation.
Our method focuses only on the single modality, i.e., raw
RGB video, to explicitly construct positive samples with the
same motions but different backgrounds for self-supervised
contrastive video representation learning.

Video Background Bias Mitigation. How to mitigate the
background bias has been a long-standing topic [10, 25, 37,
57] for action recognition. In the supervised scenario, [10]
uses an off-the-shelf human detector to mask out the human
regions and train the model in an adversarial manner. [37]
proposes a procedure to reassemble existing datasets that
alleviates static representation bias. Later, to make the self-
supervised video representations more robust to the back-
ground bias, a line of works employ other natural supervi-
sion [27, 36, 59] to guide the model to capture motion in-
formation explicitly. However, these methods require more
than one backbone to pretrain multi-modality data, result-
ing in an undesired computational cost. To better utilize the
implicit motion information in videos, DSM [52] aims to
decouple the motion and context by deliberately construct-
ing the positive/negative samples through spatial and tem-
poral disturbance. BE [53] proposes to add a static frame as
background noise for static bias mitigation. However, these
two methods would erode the moving objects and impair the
motion patterns. In contrast, our method solves this short-
coming by meticulously extracting dynamic foreground re-
gions and preserving high-quality motion patterns.

Copy-paste Augmentation. Copy-paste augmentation [12,
13, 17] is a simple way to combine information from vari-
ous instances and has been proved to be a good match for
object-aware learning. In addition, Mixup [67] and Cut-
Mix [64] share a similar idea to increase the robustness
against input corruptions. Inspired by these successes in
supervised learning, MixCo [32] applied Mixup into vi-
sual contrastive learning and construct the semi-positive im-
age from the mix-up of positive and negative images. Be-
sides, InsLoc [62] proposes to copy image instances and
paste them onto background images at diverse locations and
scales, which advances self-supervised pretraining for ob-
ject detection. FAME also copy and paste foreground con-
tent onto another video, a bit like CutMix. But one key dif-
ference in our work compared to CutMix [64] is that we
leverage motion inductive bias to guide the extraction of
the foreground region. Therefore, we can guarantee syn-
thesized sample contains motion information rather than a
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Figure 3. The statistics of temporal kernel weights at all
layers of R(2+1)D. The learned kernel weights in the super-
vised/contrastive/FAME manner are violin-plotted from left to
right.

random patch like CutMix.

3. Approach
In this section, we introduce our Foreground-background

Merging (FAME) method. In section 3.1, we first revisit
the vanilla contrastive learning framework based on in-
stance discrimination [58] and shed light on the background
bias when vanilla contrastive learning is transferred into the
video domain. In section 3.2, we elaborate on how to sep-
arate foreground regions using our method. To clarify the
notation, we denote the video clips as X ∈ RC×T×H×W ,
where C, T,H,W represents the dimension of the channel,
timespan, height, width, respectively.

3.1. Background Bias in Contrastive Learning

The vanilla contrastive learning approach employs in-
stance discrimination to learn the feature representation in a
fully self-supervised manner [7,19,24]. Generally, it aims to
maximize the similarity between the query sample q and its
positive keys k+, and minimize the similarity between q and
negative keys k−. We empirically use InfoNCE loss [20] for
optimization:

Lnce = − log

∑
k∈{k+} exp(sim(q, k)/τ)∑

k∈{k+,k−} exp(sim(q, k)/τ)
, (1)

where τ is the temperature hyper-parameter controlling
the concentration level of the distribution, and sim(q, k)
measures the cosine similarity between the latent embed-
dings, i.e., sim(q, k) = qT k/(∥q∥2 ∥k∥2). In most existing
works [15], k+ is the set of clip embeddings extracted from
the same video as q, and k− is the set from other videos.

However, this vanilla contrastive learning formulation
in the video domain cannot fully utilize the dynamic mo-



tion information and tends to discriminate different in-
stances according to the background cues [53]. To demon-
strate this phenomenon, we plot the 1D convolution lay-
ers’ kernel weights of R(2+1)D [50] trained by both su-
pervised manner 1 and contrastive manner. As depicted in
Fig. 3, the weights learned via contrastive formulation are
more compact and clustered at all layers than the weights
learned under supervision. It reveals that the supervised
model allows more flexible temporal modeling, while the
contrastive-based counterpart presents less temporal diver-
sity and prefers static cues to temporal dynamics. Moreover,
to consolidate our findings, we adopt the class-agnostic ac-
tivation map (CAAM) [3] to measure the spatial attention
in that CAAM can fairly evaluate pretrained representa-
tions without additional training. As shown in Fig. 1(a),
the model trained by the traditional contrastive task cannot
capture the moving object correctly and is distracted by the
static background. This phenomenon further indicates that
there exists the static background bias in the positive pair
formulation. As mentioned in Sec. 1, two temporally differ-
ent clips usually own similar static backgrounds but distinct
motion patterns. Thus, when simply pulling two augmented
clips closer, the model leans to prioritize the background
alignment and give up grasping the dynamic motion. To
deal with it, we carefully design FAME as an augmentation
technique. Our idea is simple. We erase the static areas
on purpose and retain the dynamic areas to construct the
positive pairs. By doing so, the model has to align the mo-
tion area firstly and break the static shortcut. We show the
contrastive learning framework with the proposed FAME in
Fig. 4. In detail, we randomly sample two clips from dif-
ferent timestamps. Before applying the basic augmentation,
we use our proposed FAME method to compound the fore-
ground of one clip with the background from other videos in
the same mini-batch. After that, the two clips are more sim-
ilar in motions than backgrounds. Then, we feed these two
clips into the 3D encoder and treat them as the positive keys
while the rest of the clips serve as negative keys. Finally,
we minimize the InfoNCE loss to pretrain the 3D encoder.
By constructing the positive pair with the same foreground
but diverse backgrounds, we guide the model to focus on
temporal cues and suppress the impact of the background.

3.2. Foreground-background Merging

Motivated by mitigating background bias in self-
supervised video representation learning, we intend to re-
tain the foreground regions in original videos and shuffle
the background areas among various videos. To achieve
this goal, we propose the Foreground-background Merg-
ing method to augment the clips with minimal computation
overhead. Concretely, FAME firstly separates the dynamic
region of the static area and then composes the foreground

1The supervised pretrained R(2+1)D is from torchvision library.

Figure 4. The contrastive learning framework with the proposed
FAME. We first randomly sample two clips from a video and use
FAME to generate new clips by composing the original foreground
onto various backgrounds from other videos. Then, we feed the
augmented clips into the existing contrastive learning scheme and
perform self-supervised pretraining.

on the other backgrounds.
We first differentiate adjacent frames iteratively and then

sum up the magnitude of the difference along channel and
timespan dimensions to generate the seed region S. We for-
mulate S ∈ RH×W as

S =
1

T − 1

C∑
c=1

T−1∑
t=1

∥Xc,t+1 −Xc,t∥1 . (2)

Intuitively, frame difference delivers natural dynamic mo-
tion that moving foreground objects tend to possess a great
magnitude, while the static backgrounds are minor in this
metric. Apart from frame difference, we also consider
other methods to convey motion information like optical
flow [65]. But we find the extraction of the dense optical
flow of each frame is time-consuming and the frame dif-
ference can be an ideal substitute for reducing the com-
putational cost. In practice, we find that the large val-
ues of the seed region S usually correspond to the mov-
ing objects’ edge region. To expand the edge of the fore-
ground objects, we take inspiration from the unsupervised
foreground discovery [47] for seed propagation. Specifi-
cally, we leverage the color distributions to estimate the en-
tire object. Denoting N (F ) as the total number of pixels
in the foreground region and N

(F )
x as the number of the

given color x appearing in the foreground region, the prob-
ability of a given color x appearing in the foreground re-
gion can be estimated as P (x | F ) = N

(F )
x /N (F ). Sim-

ilarly, the probability of x belonging to the background
region is P (x | B) = N

(B)
x /N (B). In practice, we

sample the foreground color distribution in the top 50%
of seed region S and the background color distribution in
the last 10% of seed region S. Namely, in our setting,
N (F ) = [0.5×H ×W ] and N (B) = [0.1×H ×W ].
Given the above two distributions for the color x and the as-
sumption that all pixels with the same color have the same



probability of being the foreground and background, we ap-
proximate the foreground likelihood for a given color x as
P (F | x) = P (x | F )/[P (x | F ) + P (x | B)]. There-
fore, the soft segmentation mask M ∈ RH×W can be cal-
culated based on the color of each pixel. We formulate it as
[M ]ij = P (F | xij), where xij is the color at pixel (i, j).
To better filter out the background region, we binarize the
mask as follows:[

M̃
]
ij
=

{
1, if [M ]ij is among Top-[βHW ] of M ,

0, otherwise,
(3)

where β ∈ [0, 1] is a hyper-parameter to describe the por-
tion of the foreground. For the sake of computational ef-
ficiency, the mask we generate is constant with respect of
timespan T . We view video clips as “image” when count-
ing the color statistics, i.e., X̃ =

∑T
t=1 Xt/T . Having

foreground mask M̃ , we then fill the rest with a random
background. Denoting X,Y as foreground and background
source clips, the synthetic clip

Xmerge = X ⊗ M̃ + Y ⊗ (1− M̃), (4)

where ⊗ is the element-wise multiplication. Noted that the
background area we blend into the foreground video may
not be the actual background and might contain unrelated
motions. Those motions are necessary for robust motion-
pattern learning. If all the background is filled with static
pixels, the model will be collapsed to learn whether the re-
gion contains dynamic pixels as a shortcut.

Besides, we have tried three variants to obtain the fore-
ground mask M̃ . Though we admit the quality of our gen-
erated mask cannot be comparable to the (semi-)supervised
foreground discovery methods [11, 60], we find all vari-
ants of FAME consistently enhance the representation abil-
ity shown in Table 4 and FAME works best among them. In
addition, we test the real-time performance of FAME (480
fps) on a single 8G NVIDIA T4 GPU at 16×224×224 pix-
els, which is negligible in terms of whole pretraining.

4. Experiments
In this section, we first introduce datasets and the imple-

mentation details for our experiments. Then, we conduct
a set of ablation studies to analyze and validate our FAME
method quantitatively. As the evaluation, we report our re-
sults on downstream tasks: action recognition and video re-
trieval. Finally, we investigate and make sense of what the
model learns with FAME qualitatively.

4.1. Datasets

We evaluate our method on four standard video bench-
marks. Kinetics-400 [5] is a large-scale and high-quality
dataset for action recognition, which consists of around

240K video clips with 400 human action classes. We use
the training set of Kinetics-400 to pretrain our model in a
self-supervised manner. UCF101 [46] and HMDB51 [34]
are two smaller human action datasets, where the for-
mer contains over 13k clips covering 101 action classes
and the latter annotates around 7,000 manually annotated
clips with 51 action categories. Following previous meth-
ods [38,41,55,61], we use split 1 of UCF101 and HMDB51
in our experiments for downstream tasks. Also, we adopt
UCF101 split 1 to conduct pre-training of our model for ab-
lation experiments. Finally, we consider a more challenging
dataset Diving48 [37] for evaluation, which involves around
18k trimmed video clips of 48 dive categories. It is noted
that the different diving sequences in Diving48 often oc-
cur in a similar background and primarily differ in the fine-
grained motion pattern.

4.2. Implementation Details

Self-supervised Pretraining. In the stage of self-
supervised training, we adopt the MoCo framework [8, 24]
as the representative of vanilla contrastive methods and ap-
ply our FAME method on MoCo framework. We select
two common backbone choices, R(2+1)D-18 [50] and I3D-
22 [5], as the 3D encoder. First, we randomly sample two
different temporal clips in the same video as positive pair.
Each clip consists of 16 frames with a temporal stride of
2. We spatially crop a random portion of clips and resize it
to the size of 224 × 224 or 112 × 112. Then, we employ
FAME to distract one out of the positive pairs. Notice that
the background videos are from the clips in the same mini-
batch. Next, following the prior work [15], we perform the
basic augmentation containing random grayscale, color jit-
tering, random horizontal flip, and random Gaussian blur.
All these augmentations are temporally consistent accord-
ing to [44]. We pretrain the model for 200 epochs with a
batch size of 64 on 8 Tesla V100 GPUs during the training
phase. The SGD optimizer is adopted with the initial learn-
ing rate of 10−2 and weight decay of 10−4. We show more
implementation details in the Supplementary Material.
Action Recognition. After pretraining, we initialize the
backbone with the pretrained parameters except for the last
fully connected layer. There are two popular protocols of
action recognition to validate the self-supervised represen-
tations. One is linear probe. The encoder is frozen, and we
only train the last fully connected layer. The second one is
finetune, where we train the whole network in a supervised
fashion. During the inference phase, we take the standard
evaluation protocol [41, 55, 61]. We uniformly sample ten
16-frame video clips with a temporal stride of 2 from each
testing video, then crop and resize them to 224 × 224 or
112× 112. We average the prediction of each testing video
clip and report Top-1 accuracy to measure the performance.
Video Retrieval. Without further training, we directly



UCF101 HMDB51
β single both single both
1.0(baseline) 75.8 45.5
0.7 80.3 79.6 49.6 50.8
0.5 81.2 81.2 52.6 51.4
0.3 82.0 81.1 51.6 53.1

Table 1. Top-1 accuracy with β on UCF101 and HMDB51. We
denote the operating FAME on single branch (default setting) as
single and the operating FAME on both branches as both.

Method Pretrain Dataset Diving48
Random Init. % 57.4
BE [53] UCF101 58.8
FAME(ours) UCF101 67.8
BE [53] Kinectics-400 62.4
FAME(ours) Kinectics-400 72.9

Table 2. Top-1 accuracy on Diving48 according to updated labels
(V2). Both methods use I3D and 16×224×224 pixels.

leverage the representation from the pretrained encoder for
evaluation. Following [38, 61], we take video clips in the
test set to query k nearest neighbors in the training set.
Specifically, we average ten uniformly sampled clips to ob-
tain the global representation. If the category of the testing
clip appears in the k nearest neighbors, it counts as a hit.
We report Top-k recall R@k for evaluation.

4.3. Ablation Study

To analyze how our FAME improves self-supervised
video representation learning, we conduct the following ab-
lation studies. We choose split 1 of UCF101 as the pre-
train dataset and I3D as the backbone for computational ef-
ficiency. All of the Top-1 accuracy in our ablation study is
measured under the protocol of finetune.
Area Ratio of Foreground Region. To inspect how the
area ratio of the foreground region contributes to the repre-
sentation quality, we ablate β (i.e., the portion of the fore-
ground) in the range of {1, 0.7, 0.5, 0.3}. We report the per-
formance comparison in Table 1. Note that β = 1 reverts to
the baseline method without applying FAME. It can be ob-
served that the results of β = 0.3 and 0.5 vastly outperform
baseline by ∼ 6% on both UCF101 and HMDB51. The im-
provement of β = 0.7 is also considerable, though slightly
inferior to the smaller value of β due to insufficient back-
ground replacement. It validates our idea that replacing the
static area guides the model to distill motion-aware repre-
sentations and thus enhance the downstream performance.
Stronger background debiasing. To explore whether
FAME is sufficiently strong to reduce the background bias
in contrastive learning, we design a stronger contrastive ob-
jective. That is, we apply FAME on both branches of MoCo
and neither of the two processed video clips contains ini-

Background UCF101 HMDB51
none 75.8 45.5
intra-video 77.4(1.6↑) 47.6(2.1↑)
inter-video 81.2(5.4↑) 52.6(7.1↑)

Table 3. Top-1 accuracy on UCF101 and HMDB51 in terms of
intra-/inter-video background.

Method UCF101 HMDB51
baseline 75.8 45.5
Gauss 77.9 46.4
Seed 80.4 51.3
Grid 81.5 51.5

FAME 81.2 52.6
Grid† 86.5 58.7

FAME† 88.6 61.1

Table 4. Top-1 accuracy of various foreground-background sepa-
ration methods on UCF101 and HMDB51. † indicates the pretrain
dataset is Kinetics-400. FAME performs best.

tial background information. We report the results in Ta-
ble 1. The neglectable difference in performance between
both settings proves that our default setting is strong enough
to learn the scene-debiased representations.
Background source. Besides the foreground ratio, we also
investigate how the source of background affects the rep-
resentation ability to capture the motion. Specifically, we
aim to explore whether the performance would change dra-
matically using the background in the same video instead of
other videos. We perform an experiment where we merge
the foreground of one video with the background sampled
at different timestamps of the video itself. As shown in Ta-
ble 3, we find that using the background from intra-video
slightly boosts the baseline with 1.6% and 2.1% improve-
ment on UCF101 and HMDB51 and the introduction of
other videos’ backgrounds brings further improvement, i.e.,
5.4% and 7.1% gain on UCF101 and HMDB51. In general,
the intra-video background is almost the same as the origi-
nal one, while the inter-video background is quite distinct.
Thus, it is consistent with our intuition that the modifica-
tion from the intra-video is not adequate to mitigate back-
ground bias while replacing the background with diverse
scenes better strengthens motion pattern learning.

Figure 5. The illustration about FAME and three variants.

Variants of Foreground Mask. To verify that emphasiz-
ing moving foreground advances the motion understanding
in contrastive framework, we devise three variants of fore-



Method Backbone Pretrain Dataset Frames Res. Freeze UCF101 HMDB51
CBT [48] S3D Kinetics-600 16 112 ! 54.0 29.5
CCL [33] R3D-18 Kinetics-400 16 112 ! 52.1 27.8
MemDPC [22] R3D-34 Kinetics-400 40 224 ! 54.1 30.5
RSPNet [6] R3D-18 Kinetics-400 16 112 ! 61.8 42.8
MLRep [43] R3D-18 Kinetics-400 16 112 ! 63.2 33.4
FAME (Ours) R(2+1)D Kinetics-400 16 112 ! 72.2 42.2

VCP [38] R(2+1)D UCF101 16 112 % 66.3 32.2
PRP [63] R(2+1)D UCF101 16 112 % 72.1 35.0
TempTrans [29] R(2+1)D UCF101 16 112 % 81.6 46.4
3DRotNet [30] R3D-18 Kinetics-400 16 112 % 62.9 33.7
Spatio-Temp [54] C3D Kinetics-400 16 112 % 61.2 33.4
Pace Prediction [55] R(2+1)D Kinetics-400 16 112 % 77.1 36.6
SpeedNet [4] S3D-G Kinetics-400 64 224 % 81.1 48.8
VideoMoCo [41] R(2+1)D Kinetics-400 32 112 % 78.7 49.2
RSPNet [6] R(2+1)D Kinetics-400 16 112 % 81.1 44.6
MLRep [43] R3D-18 Kinetics-400 16 112 % 79.1 47.6
ASCNet [26] R3D-18 Kinetics-400 16 112 % 80.5 52.3
SRTC [68] R(2+1)D Kinetics-400 16 112 % 82.0 51.2
FAME (ours) R(2+1)D Kinetics-400 16 112 % 84.8 53.5
DSM [52] I3D Kinetics-400 16 224 % 74.8 52.5
BE [53] I3D Kinetics-400 16 224 % 86.8 55.4
FAME (ours) I3D Kinetics-400 16 224 % 88.6 61.1

Table 5. Comparison with the existing self-supervised video representation learning methods for action recognition on UCF101 and
HMDB51. To compare fairly, we list each work’s setting, including backbone architecture used, pretrain dataset and spatial-temporal
resolution. Freeze (tick) indicates linear probe, and no freeze (cross) means finetune.

Method Backbone
R@k

R@1 R@5 R@10 R@20 R@50
SpeedNet [4] S3D-G 13.0 28.1 37.5 49.5 65.0
TempTrans [29] R3D-18 26.1 48.5 59.1 69.6 82.8
MLRep [43] R3D-18 41.5 60.0 71.2 80.1 -
GDT [42] R(2+1)D 57.4 73.4 80.8 88.1 92.9
ASCNet [26] R3D-18 58.9 76.3 82.2 87.5 93.4
FAME (ours) R(2+1)D 64.6 77.7 82.9 87.6 94.2

Table 6. Comparison with the existing self-supervised video representation learning methods for video retrieval. All methods are pretrained
on Kinetics-400. We report the Top-k recall R@k when k=1, 5, 10, 20, 50 on UCF101.

ground mask: (i) Gauss: we adopt a 2D Gaussian kernel
matrix as the foreground mask. It derives from the assump-
tion that videos are shot in the object-centric form. (ii)
Seed: we just take the seed region S to characterize the
foreground. (iii) Grid: the video is split into 4 × 4 grids
spatially. We count the sum of S in each grid and take the
greatest eight grids as the foreground area. A brief illustra-
tion is displayed in Fig. 5. We compare FAME with these
three variants in Table 4. First, we note that all variants
improve the baseline by a large margin, demonstrating the
benefit of the introduction of different backgrounds. Fur-
thermore, refining the foreground mask from Gauss, Seed,
Grid to FAME continually increases the action recognition

performance. Interestingly, we notice that Grid outperforms
FAME a little on UCF101. We conjecture that since both
the pretrain dataset and downstream dataset are UCF101,
similar backgrounds that occurred might be leveraged as
a shortcut. To delve into this phenomenon, we carry out
an extra experiment on another pretrain dataset Kinetics-
400. Top-1 accuracy of Grid variant is over 2% lower than
FAME on both UCF101 and HMDB51. It indicates that a
meticulous segmentation mask instead of a rough grid box
is more effective in facilitating generalization ability when
transferring the motion-aware representations to different
downstream benchmarks.



4.4. Evaluation on Downstream Tasks

Action Recognition on UCF101 and HMDB51. To verify
the effectiveness of the proposed method, we compare our
method with the prior arts. In Table 5, we report Top-1
accuracy on UCF101 and HMDB51. For a fair comparison,
we do not report methods with a deeper backbone or non-
single modality, e.g., optical flow, audio, and text.

Our method obtains the best result on UCF101 and a
comparable result on HMDB51 in the linear probe setting.
FAME beats MLRep [43] by a large margin, i.e., about
9.0% gain on both UCF101 and HMDB51, where MLRep
carefully designs the multi-level feature optimization and
temporal modeling. The outstanding performance verifies
that our method captures the moving foreground patterns
without further finetune.

In the finetune protocol, FAME with R(2+1)D backbone
achieves the best result on UCF101 and HMDB51. It shows
that FAME learns the scene-debiased and motion-aware
representations on the Kinetics-400 dataset, which would
generalize better to downstream datasets. Remarkably, our
simple formulation outperforms SRTC [68] by 2.8% and
2.3% with the same backbone R(2+1)D, despite its two ad-
ditional sub-loss terms regularizing the self-supervised pre-
training. Notably, we share similar motivation with BE [53],
which directly adds a static frame to every other frame and
regards this distracting video as the positive pair to the orig-
inal video. Such subtle disturbance cannot sufficiently mit-
igate the static background bias, confirmed by the experi-
mental results. When using the same backbone I3D, our
FAME outperforms BE by 1.8% and 5.7% on UCF101 and
HMDB51, respectively. It proves that our method can better
highlight the motion patterns.
Video Retrieval on UCF101 and HMDB51. We report the
performance comparison on the video retrieval task in Ta-
ble 6. Our method achieves significant performance gain
from R@1 to R@50. Remarkably, though ASCNet [26] de-
vises two particular tasks to learn the appearance and speed
consistency, we still gain 6.7% improvement on Top-1 re-
trieval accuracy only through fabricating motion-aware pos-
itive pairs, which demonstrates our methods can recognize
the action semantics more precisely.
Evaluation on Diving48. Besides common action recogni-
tion benchmarks, we finetune and test our FAME on a more
challenging fine-grained dataset Diving48 and report the re-
sults in Table 2. In Diving48, since the static backgrounds
are not strongly related to the fine-grained diving label, our
motion-aware representations can strongly benefit the ac-
tion recognition. FAME can boost a randomly initialized
model by 15.5% when pretraining on Kinetics-400. In com-
parison, no matter whether the pretrain dataset is UCF101
or Kinetics-400, BE is far less effective than FAME. This
is because BE does not construct the motion-aware positive
pairs where background features are still more similar in

contrast to the motion counterparts. The result on Diving48
indicates FAME can indeed make the model perceive the
long-term motion patterns and hinder the scene bias.

4.5. Visualization Analysis

To better demonstrate the effectiveness of FAME, we vi-
sualize the CAAM [3] in Fig. 1. By comparison, the model
learned by FAME enhances the activation on the moving
foreground area and suppresses the background area. For
example, in the second column of Fig. 1, FAME precisely
captures two baseball players in the court, while the vanilla
contrastive method displays a dispersed highlight map and
fails to attend to the motion area.

Moreover, compared to vanilla contrastive method, the
distribution of temporal kernel learned by FAME is more
scattered with larger variance as shown in Fig. 3. Surpris-
ingly, the shape of FAME’s temporal kernel weights is sim-
ilar to supervised learning, showing that via FAME, con-
trastive learning can well grasp action semantics. In light
of the aforementioned evidence, we safely conclude that
guided by the strong motion inductive augmentation like
FAME, contrastive learning can also prevent background
cheating and pay attention to the motion patterns.

5. Conclusion

In this work, we propose a new Foreground-background
Merging (FAME) method to alleviate the background
bias in self-supervised video representation learning. Via
Foreground-background Merging, we augment the original
video by fusing the original foreground with other videos’
backgrounds. When forcing the backbone model to learn
semantically consistent representation between the original
video and the fused video, the model can learn the scene-
debiased and motion-aware representations of videos. Ex-
perimental results on a bunch of downstream tasks manifest
the effectiveness of our method.

While our work shows some promising results, there are
still some limitations. One is that the quality of foreground
extraction is not stable, especially when foreground and
background have no significant differences in the color dis-
tribution or the camera is dynamically moving. Besides, the
foreground area ratio is now fixed by hyper-parameter β. It
would be better to set an adaptive foreground area ratio.
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